TY - THES T1 - Eliminierung apoptotischer Zellen durch professionelle Phagozyten: Generierung, Freisetzung und Erkennung des monozytären Attraktionssignals Lysophosphatidylcholin und Bedeutung von Annexin I als Brückenprotein in der phagozytotischen Synapse A1 - Waibel,Michaela Y1 - 2007/12/12 N2 - Die effiziente Eliminierung apoptotischer Zellen durch Phagozyten ist essentiell für die Aufrechterhaltung der Gewebshomöostase in mehrzelligen Organismen. Dazu werden von apoptotischen Zellen verschiedene Phagozytose- oder ?eat-me?-Signale auf der Oberfläche präsentiert, die für die Erkennung und Internalisierung entscheidend sind. In höheren Organismen sind die sterbenden Zellen und die Phagozyten jedoch oft nicht direkt nebeneinander lokalisiert; deshalb kommt hier der Freisetzung von löslichen Attraktionssignalen eine besondere Bedeutung zu. Als ein zentrales ?find-me?-Signal konnte Lysophosphatidylcholin (LPC) identifiziert werden, das durch die hydrolytische Spaltung von Phosphatidylcholin mittels der Calcium-unabhängigen Phospholipase A2 (iPLA2) entsteht. Dabei wird die iPLA2 während der Apoptose Caspase-3-abhängig gespalten. In der vorliegenden Arbeit konnte gezeigt werden, dass die Prozessierung von iPLA2 direkt durch Caspase-3 geschieht und zu deren Aktivierung führt. Die aktive iPLA2 ist dabei essentiell für die Produktion des Attraktionssignals LPC in apoptotischen Zellen. Da die Expression von aktiver iPLA2 in vitalen Zellen jedoch nicht zu einer Freisetzung des Attraktionssignals führte, musste angenommen werden, dass weitere apoptotische Ereignisse an der Generierung und dem Export von LPC beteiligt sind. Es zeigte sich, dass die Oxidation von Membranlipiden, wie Phosphatidylcholin, durch reaktive Sauerstoffverbindungen ein zusätzlicher Faktor ist, der zur verstärkten Produktion von LPC beiträgt - vermutlich weil peroxidierte Lipide anfälliger für eine PLA2-vermittelte hydrolytische Spaltung sind als nicht-oxiderte. Weitere Untersuchungen zum genauen Exportmechanismus von LPC ergaben, dass das ABC (ATP-binding cassette transporter)-Familienmitglied ABCA1 essentiell für die Freisetzung des Attraktionssignals während der Apoptose ist. Somit konnten mit der Lipidoxidation und dem ABCA1-vermittelten LPC-Export weitere entscheidende Elemente der LPC-Produktion und anschließenden Freisetzung dieses ?find-me?-Signals während der Apoptose charakterisiert werden. Nachdem die Generierung und Freisetzung des Attraktionssignals LPC näher aufgeklärt werden konnte, stellte sich die Frage, welche Rezeptoren die Wirkung von LPC auf den Phagozyten vermitteln. Im Rahmen der vorliegenden Arbeit konnte gezeigt werden, dass der G-Protein-gekoppelte Rezeptor G2A verantwortlich ist für die Migration von Monozyten auf das Attraktionssignal LPC. Die molekularen Mechanismen, die letztendlich zur LPC-stimulierten, G2A-vermittelten Migration führen, sind jedoch weitgehend unbekannt. Auch eine Beteiligung anderer Rezeptoren an der LPC-vermittelten Anlockung von Phagozyten oder das Vorhandensein weitere chemotaktisch aktiver Signale kann hier nicht ausgeschlossen werden, zumal sich in der Literatur einige Hinweise auf chemotaktisch aktive Proteine finden. Ob diese oder weitere Faktoren im Zusammenhang mit der LPC-vermittelten Chemotaxis monozytärer Zellen stehen, ist bis jetzt jedoch nicht untersucht. Die Erkennung und Internalisierung sterbender Zellen erfolgt über die Interaktion von verschiedenen auf apoptotischen Zellen vorhandenen ?eat-me?-Signalen mit spezifischen Oberflächenrezeptoren von Phagozyten, wobei diese Interaktion direkt oder indirekt über Brückenproteine stattfindet. In diesem Zusammenhang konnte hier gezeigt werden, dass das Calcium- und Phospholipid-bindende Protein Annexin I von apoptotischen Zellen externalisiert wird, und zwar unabhängig vom verwendeten Apoptose-Stimulus, jedoch Zelltyp-abhängig. Die Bindung von Annexin I auf der Oberfläche der sterbenden Zelle erfolgt Calcium-abhängig über die Annexin-Boxen an ebenfalls externalisiertes Phosphatidylserin, das ein zentrales Phagozytose-Signal darstellt. Dadurch kann Annexin I die Eliminierung dieser Zellen durch professionelle Phagozyten stimulieren und erfüllt somit die Funktion eines Brückenmoleküls in der phagozytotischen Synapse. Über welche Rezeptoren Annexin I dabei von Phagozyten erkannt wird, ist dagegen bis jetzt nicht klar. Insgesamt stellen die hier untersuchten Phänomene wichtige Schritte bei der effizienten Eliminierung apoptotischer Zellen dar, die dazu beiträgt, dass der apoptotische Zelltod, im Gegensatz zur Nekrose, ohne schädigende Nebenwirkungen für den Gesamtorganismus abläuft. Ist dieser komplexe, mehrstufige Prozess gestört, können nicht-eliminierte apoptotische Zellen zur Quelle für inflammatorische Reaktionen werden. In verschiedenen Tiermodellen konnte gezeigt werden, dass sowohl Defekte bei der Anlockung von Phagozyten als auch bei der Erkennung und Internalisierung durch ?eat-me?-Signale und der anschließenden Degradation der apoptotischen Zellen Ursache für die Entwicklung schwerer Autoimmunerkrankungen sein können. Auch die Entstehung des humanen systemischen Lupus erythematodes und von rheumatoider Arthritis wird inzwischen mit der unzureichenden Eliminierung apoptotischer Zellen in Zusammenhang gebracht. KW - Apoptosis KW - Phagozytose KW - Clearance KW - Chemotaxis KW - Phospholipase A2 KW - Annexin I KW - Autoimmunität CY - Hohenheim PB - Kommunikations-, Informations- und Medienzentrum der Universität Hohenheim AD - Garbenstr. 15, 70593 Stuttgart UR - http://opus.uni-hohenheim.de/volltexte/2007/212 ER -