TY - THES T1 - Impact of climate change on future barley (Hordeum vulgare L.) production in Ethiopia A1 - Gardi,Mekides W. Y1 - 2022/11/23 N2 - Summary Barley (Hordeum vulgare L.) is the fourth major cereal crop in the world, and it accounts for 8% of the total cereal production in Ethiopia based on cultivation location. Farmers may face unpredictable rainfall and drought stress patterns, such as terminal drought, in which rainfall ends before crops reach physiological maturity, posing a challenge to crop production. Furthermore, climate change is expected to reduce crop production/yield due to increases in carbon dioxide (CO2) and ozone (O3) concentrations, temperatures, and extreme climate events such as floods, storms, and heatwaves, highlighting the importance of taking action to develop climate-resilient cultivars and secure future crop production. Against this background, a meta-analysis study was conducted to synthesize and summarize to assess the overall effect of elevated CO2 (eCO2), and its interaction with nitrogen (N) and temperature on barley grain yield and yield components. A climate chamber experiment was carried out to identify the impacts of projected CO2 enrichment (eCO2) on a set of landraces and released cultivars of Ethiopian barley. The crop-climate modeling approach was used to simulate future climate change and to identify the impacts of climate change on selected barley genotypes and study locations in Ethiopia. Furthermore, adaption options were simulated and identified. Publication I, aimed to answer how eCO2 and its interaction with N and temperature affects barley yield at a global level. Peer-reviewed primary literature (published between 1991-2020) focusing on barley yield responses to eCO2, temperature, and N were searched on different search engines. The response of five yield variables of barley was synthesized and summarized using a meta-analysis technique. Different experimental factors which might affect the estimation of the response of barley yield to eCO2 were calculated. The results revealed that eCO2 increased barley yield components such as vegetative biomass (23.8%), grain number (24.8%), and grain yield (27.4%) at a global level. Barley vegetative biomass and grain yield were increased under the combination of eCO2 with the higher N level (151-200 kg ha-1) compared to the lower levels. Grain number and grain yield were increased when eCO2 combined with temperature level (21-25°C) this response was not evident. The response of barley to eCO2 was different among genotypes and experimental conditions. Publication II, the genetic diversity of Ethiopian barley was screened under eCO2 enrichment in a controlled exposure experiment. The experiment was conducted at the Institute of Landscape and Plant Ecology, the University of Hohenheim in 2019. A total of 30 (15 landrace and 15 released cultivars) were grown under two levels of CO2 concentration (400 and 550 ppm) in climate chambers. Plant-development-related measurements and water consumption were recorded once a week and yield was measured at the final harvest. A significant increment in plant height by 9.5 and 6.7%, vegetative biomass by 7.6 and 9.4%, and grain yield by 34.1 and 40.6% in landraces and released cultivars, respectively were observed due to eCO2. The effect of eCO2 was genotype-dependent, for instance, the response of grain yield in landraces ranged from -25% to +122%, while it was between -42% to 140% in released cultivars. The water-use efficiency of vegetative biomass and grain yield significantly increased by 7.9 and 33.3% in landraces, with 9.5 and 42.9% improvement in released cultivars, respectively under eCO2. Comparing the average response of landraces versus released Ethiopian barley cultivars, the highest percentage yield change due to eCO2 was recorded for released cultivars. However, higher actual yields under both levels of CO2 were observed for landraces. Publication III, Current and future climate change, its impact on Ethiopian barley production, and adaptation options were simulated using the DSSAT-CERES-Barley model. Climate change scenarios were set up over 60 years using Representative Concentration Pathways (4.5 and 8.5), and five Global Climate Models. The changes in Ethiopian climate and barley production were calculated from the baseline period (1981-2010). Different sowing dates, sowing densities, and fertilizer levels were tested as climate change impact mitigation strategies in a sensitivity analysis. The analysis of a crop-climate model revealed an increasing trend of temperature (1.5 to 4.9 °C) and a mixed trend of rainfall (-61.4 to +86.1%) in the barley-producing locations of Ethiopia. The response of two Ethiopian barley cultivars was simulated under different climate change scenarios and a reduction of yield up to 98% was recorded for cv. Traveler while cv. EH-1493 exhibited a reduction of up to 63%. Even though a similar trend was observed for most of the studied locations, cv. EH-1493 showed a yield gain of up to 14.7% at Holeta. The sensitivity analysis on potential adaptation options indicated that the negative effects of climate change could be mitigated by earlier sowing dates, with a 25% higher sowing density and a 50% higher fertilizer rate than the current recommendation. The results of the present dissertation show the change in the Ethiopian climate and its impact on barley production. Barley production could benefit from eCO2; however, the response varied among genotypes, additional stress, and experimental condition. A reduction of barley grain yield under different climate change scenarios was observed mainly due to increasing temperature. However, the reduction could be minimized through different adaptation options. The information from the current dissertation could be used to identify agro-economic implications of CO2 enrichment and climate variability on yield regarding appropriate genotype selection and adaptation of regional cropping systems (e.g., management and breeding strategies). Further experimental studies assessing crop production, nutritional quality, and adaptation options under multifactor climate conditions should be carried out to increase basic understanding and identify genotypes for future breeding programs. KW - Gerste KW - Klimaänderung CY - Hohenheim PB - Kommunikations-, Informations- und Medienzentrum der Universität Hohenheim AD - Garbenstr. 15, 70593 Stuttgart UR - http://opus.uni-hohenheim.de/volltexte/2022/2089 ER -