RT Dissertation/Thesis T1 PEP7 is a ligand for receptor kinase SIRK1 to regulate aquaporins and root growth A1 Wang,Jiahui WP 2021/11/17 AB Receptor kinases constitute the largest protein family in regulating various responses to external and internal biotic and abiotic signals. Functional characterization of this large protein family and particularly the identification of their ligands remains a major challenge in plant biology. Previously, we identified SIRK1 and QSK1 as a receptor / co-receptor pair involved in regulation of aquaporins in response to osmotic changes induced by sucrose. Here, we now identify a member of the Elicitor Peptide (PEP) family, namely PEP7, as a ligand to receptor kinase SIRK1. PEP7 was shown to bind to the extracellular domain of SIRK1 with a binding constant of 19 µM. PEP7 was secreted to the apoplasm specifically in response to sucrose. Formation of a signaling complex involving SIRK1, QSK1 as well as aquaporins as substrates was induced by sucrose or external PEP7 treatment. PEP7 induced aquaporin phosphorylation and water influx activity. The knock-out mutant of receptor SIRK1 was not responsive to external PEP7 treatment. Binding to receptor SIRK1 and induction of physiological responses was specific to PEP7, neither other members of the PEP-family (PEP6, PEP4), nor other small signaling peptides (CLEs, IDA, RALFs) induced SIRK1 kinase activity, aquaporin phosphorylation, or protoplast water influx activity. K1 Ligand, Rezeptor, Aquaporine K1 Rezeptor K1 Aquaporin PP Hohenheim PB Kommunikations-, Informations- und Medienzentrum der Universität Hohenheim UL http://opus.uni-hohenheim.de/volltexte/2021/1959