RT Dissertation/Thesis T1 Vergleichende Untersuchungen zur Musterbildung in erregbaren Medien mit Vermerken zum Einfluss schwacher magnetischer Felder - Schwerpunkt: Belousov-Zhabotinsky-Reaktion A1 Dolzmann,Kerstin WP 2007/05/24 AB In der Arbeit wurde der Einfluss eines schwachen magnetischen Feldes (MF) auf die Musterbildung erregbarer Medien untersucht (Gleichspannungs- (DC) und Wechselspannungsfelder (AC)). Als Beispielmodelle dienten die Belousov-Zhabotinsky-Reaktion (BZR) und Ferrofluide. Die durch vertikale Vibration angeregten Ferrofluide zeigen bei Erhöhung der zugefügten Energie (Vergrößerung der Amplitude) Phasenübergänge in ihrer Musterbildung. Im DC-Feld erhöhte sich die Viskosität der magnetischen Flüssigkeit, wodurch die Phasenübergänge verschoben werden. Eine nicht-stationäre, gerührte BZR zeigt einen periodischen Farbwechsel zwischen gelb und farblos ? oder rot und blau, wenn man sie um den Katalysator Ferroin ergänzt. Diese Oszillation wird in der Literatur als einfache Kurve dargestellt. Im Versuch konnte aber ein weitaus komplexerer Kurvenverlauf aufgezeichnet werden. Die intrinsischen optischen Signale (IOS) einer Ferroin-katalysierten, gerührten BZR wiesen zu Beginn der Reaktion Doppelpeaks auf, die nach einigen Oszillationen wieder verschwanden. Dieses Verhalten ist in seinem Auftreten abhängig von der Ferroin-Konzentration und gleicht den elektrischen und optischen Signalen neuronaler Gewebe (z.B. retinale spreading depression). Diese Ähnlichkeit untermauert die bisherige Verwendung der BZR als Modellsystem für die Erforschung neuronaler Vorgänge, auch wenn die dahinter liegenden Mechanismen vollkommen unterschiedlich sind. Setzt man dieses System dem Einfluss eines schwachen magnetischen DC-Feldes aus, kommt zum Doppelpeak eine weitere interne Oszillation der IOS-Kurve hinzu. Auch verhält sich der Doppelpeak selbst anders als ohne externes Feld. Bei weiterer Erweiterung, z.B. durch die Erzeugung kleiner Ströme in einem elektromagnetischen AC-Feld, geht das System dann langsam in ein chaotisches Verhalten über. Jedes Hinzfügen einer zusätzlichen Komponente hat eine erneute Bifurkation des Systems zur Folge und führt letztendlich ? so vermuten wir ?zum Übergang des Musters ins Chaos. BZR-Gele zeigen helle propagierende konzentrische Ringe oder Spiralen als Muster. Mit den verwendeten Messmethoden und ?Geräten konnte keine Veränderungen im Muster beobachtet werden, wenn das System um Komponenten erweitert wurde. Man kann aber vermuten, dass sich im DC-Feld das zeitliche Verhalten der Gele verändert: Es scheint insgesamt schneller zu werden. K1 Belousov-Zabotinskij-Reaktion K1 Musterbildung PP Hohenheim PB Kommunikations-, Informations- und Medienzentrum der Universität Hohenheim UL http://opus.uni-hohenheim.de/volltexte/2007/189