RT Dissertation/Thesis T1 Agricultural diversification of biogas crop cultivation A1 Cossel,Moritz WP 2019/04/16 AB For all types of agricultural land-use, more diverse cropping systems are required, with respect to the maintenance of ecosystem values such as biodiversity conservation and climate change adaptation. This need for greater agricultural diversity is clearly illustrated by biogas crop cultivation. In Germany, maize currently dominates biogas crop cultivation due to its outstanding methane yield performance. However, the ecosystem value of maize cultivation decreases if good agricultural practices are ignored. Additionally, the poor aesthetical value of maize has led to biogas production gaining a negative reputation in society. To increase the diversity of biogas crop cultivation, alternative biogas crops such as amaranth and wild plant mixtures need to be investigated with respect to both yield performance and biogas substrate quality. The research objective of this study was the development of strategies for agricultural diversification of biogas crop cultivation. For this purpose, the following research questions were formulated: 1. How does amaranth perform as a biogas crop compared to maize and what are the major opportunities for and obstacles to the large-scale implementation of amaranth cultivation? 2. How does the spatial diversification ‘legume intercropping’ perform in amaranth compared to maize and what are the major opportunities for and obstacles to its practical implementation? 3. How do perennial wild plant mixtures perform in biomass production with respect to yield, quality and species diversity in the long term and what are the relevant agronomic factors? 4. How do available models perform in the prediction of specific methane yield of different crops based on their lignocellulosic biomass composition and how could they be improved? To address research questions 1 and 2, field trials with amaranth and maize were conducted in southwest Germany in the years 2014 and 2015. Amaranth established well in both years. Its dark red inflorescences attracted many insects such as honeybees, wild bees and bumble bees. Therefore, a systematic implementation of amaranth into biogas crop rotations could significantly improve their socio-ecological value in terms of biodiversity conservation and landscape beauty. However, amaranth showed significantly lower dry matter yields (DMY) and specific methane yields (SMY), together resulting in lower methane yields than maize in both years. Therefore, breeding and an optimization of agricultural practices such as sowing density, planting geometry and fertilization management are required to make amaranth more competitive in comparison to maize. To address research question 2, the amaranth field trials mentioned above also included treatments of legume intercropping with runner bean (RB, Phaseolus vulgaris L.) and white clover (WC, Trifolium repens, L.). The RB and WC developed equally well in amaranth and maize each year. For both amaranth and maize, the RB share of total DMY was low (5-10%) and did not significantly affect the total DMY. By contrast, WC had a significant negative effect on the DMY. Overall, the spatial diversification ‘legume intercropping’ could considerably improve the socio-ecological value of amaranth cultivation in terms of biodiversity conservation, greenhouse gas (GHG) mitigation and soil protection. For research question 3, two different wild plant mixtures (WPM) were cultivated on three sites in southwest Germany from the years 2011 to 2015. At each location, the WPM showed great potential for both biodiversity conservation and ecosystem resilience. Numerous insect species were observed in the WPM stands each year, indicating WPM as a relevant cropping system for habitat networking. Furthermore, the aesthetic appearance of the WPM stands over the years demonstrated the potential positive effect WPM cultivation could have on the public perception of biogas production. The DMY of the WPM varied strongly depending on (i) the initial composition of species sown, (ii) the establishment procedure, (iii) the environmental conditions, (iv) the pre-crop, and (v) the number of predominant species. WPM were found to have low demands for fertilization and crop protection. Thus, WPM appear a promising low-input cropping system for the promotion of biodiversity conservation, habitat networking, soil and water protection, GHG mitigation and climate change adaptation. However, high DMY gaps remain a challenge for the practical inclusion of WPM in existing biogas cropping systems. With respect to research question 4, a meta-analysis revealed that available models proved to be much less precise than expected. Although outperforming all available models, the correlation of the new models was still low (up to r = 0.66). It was also found that non-linear terms are of less importance than crop-specific regressors including the intercept. This indicates that across-crop models including crop-specific configurations could help to improve the identification of alternative crops and cropping systems for a more diverse biogas crop cultivation in the future. K1 Pflanzenbau K1 Biodiversität K1 Biogas K1 Biomasse K1 Diversifikation PP Hohenheim PB Kommunikations-, Informations- und Medienzentrum der Universität Hohenheim UL http://opus.uni-hohenheim.de/volltexte/2019/1600