RT Dissertation/Thesis T1 Effekt der Überproduktion von Enzymen des Glucosestoffwechsels auf das Wachstum und die Alkoholbildung in der Hefe Saccharomyces cerevisiae A1 Emili,Markus WP 2006/09/22 AB Die Wein-, Bier- und Bäckerhefe Saccharomyces cerevisiae ist der Hauptproduzent in der weltweiten Alkoholproduktion. Im Rahmen der Untersuchungen zur Bioethanolproduktion sollten in der vorliegenden Arbeit die Auswirkungen der Überproduktion aller am Glucoseumsatz der Hefe Saccharomyces cerevisiae beteiligten Enzyme in vivo untersucht werden, um die Möglichkeit einer beschleunigten Ethanolproduktion zu eröffnen. Hierzu war von Vorteil, dass S. cerevisiae sowohl klassisch-genetisch als auch molekulargenetisch zu den bestuntersuchten eukaryontischen Organismen zählt. So standen zwei verschiedene Hochkopienzahl-Vektoren zur Verfügung, in die im ersten Teil der Arbeit jeweils die Hälfte der zu exprimierenden Gene eingesetzt werden konnten. Dies erfolgte in den ersten Schritten durch Restriktion und Ligation und im weiteren Verlauf durch eine Kombination der PCR-Technik zur Amplifikation der in Frage kommenden Genomfragmente mit der effizienten homologen Rekombination in vivo. So wurden sowohl das Gen für einen Hexosetransporter (HXT1), als auch alle für die Glykolyseenzyme kodierenden Gene (HXK2, PGI1, PFK1, PFK2, FBA1, TPI1, TDH1 bzw. TDH2, PGK1, GPM1, ENO2, PYK1) und die für die abschließenden Schritte der Umwandlung von Pyruvat in Ethanol kodierenden Gene (PDC1, ADH1) kloniert. Nach Isolierung aus der Hefe wurden die entsprechenden Plasmide anschließend in E. coli amplifiziert und Restriktionsanalysen unterzogen. Die Bestimmung der spezifischen Enzymaktivitäten in Extrakten aus entsprechenden Hefetransformanten ergab eine leichte Überproduktion (Faktor 1,5 bis 3,0) für alle Enzyme mit Ausnahme der Glycerinaldehyd-3-phosphat Dehydrogenase. Für HXT1 wurde eine deutlich erhöhte Transkriptionsrate (Faktor 14 im Vergleich zum Ausgangsstamm) als Indiz für die tatsächliche Überproduktion gewertet. In den enzymatischen Messungen zeigte sich eine deutliche Tendenz zur Senkung der Überproduktion mit zunehmender Zahl der plasmidkodierten Gene. Hieraus läßt sich eine negative Rückkopplung in Bezug auf die Regulation des Glykolyseflusses ableiten. Untersuchungen der Wachstumsraten im zweiten Teil der Arbeit zeigten ebenfalls eine deutliche Reduktion mit Zunahme der exprimierten Gene. In Bezug auf die physiologischen Parameter führte dies letztlich zu gleichbleibenden Glucoseverbrauchs- und Ethanolbildungs-Koeffizienten relativ zur Wildtyp-Kontrolle bei vergleichbaren Ausbeutekoeffizienten. Interessanterweise führte die Aufhebung der ATP-Hemmbarkeit im Phosphofructokinase-Schritt durch die Expression eines Mutantenallels von PFK1 zu einem verbesserten Wachstum ansonsten isogener Transformanten. Dieses Ergebnis unterstützt die physiologische Bedeutung der allosterischen Regulation in diesem zentralen Glykolyseschritt. Ein Verlust glykolytischer Enzymaktivitäten in Deletionsmutanten führt bei S. cerevisiae in der Regel zur Wachstumshemmung. Daher wurde in einem weiteren Teil der Arbeit mit der Konstruktion eines Hefestammes begonnen, bei dem allein die Anzucht mit verschiedenen Zuckerquellen selektiv für den Erhalt der Überproduktionsplasmide sein sollte. Hierzu wurde ein Stamm mit einer pgi1-Deletion mit einem pyk1-Deletionsstamm gekreuzt und einer Tetradenanalyse unterzogen. Erste Versuche mit Zwischenkonstrukten deuten hier bereits auf eine deutliche Erhöhung der Plasmidstabilität nach Anzucht auf komplexen Medien hin. Aus der vorliegenden Arbeit leiten sich wertvolle Erkenntnisse über die Regulation des Glykolyseflusses in vivo ab, die die Basis für weitere Untersuchungen zur Steigerung der Ethanolproduktionsrate durch Hefe bilden K1 Gärung K1 Glucosestoffwechsel K1 Molekulargenetik K1 Überproduktion PP Hohenheim PB Kommunikations-, Informations- und Medienzentrum der Universität Hohenheim UL http://opus.uni-hohenheim.de/volltexte/2006/158