RT Dissertation/Thesis T1 Functional characterization of the COOH-terminal kinase activity of the TBP-associated factor TAF1 T3 Science 2004 Volume 304: 1010-4. A1 Maile,Tobias WP 2006/08/30 AB Activation of eukaryotic transcription involves an orchestrated interplay between transcription factors and the general RNA polymerase II (Pol II) transcription machinery (GTM), which consists of Pol II and general transcription factors (GTFs). The GTF TFIID consists of the TATA-box binding protein (TBP) and several TBP-associated factors (TAFs). The binding of TFIID to promoters can nucleate transcription. TAF1 is the largest subunit of TFIID and plays a central role within the nucleating function of TFIID in transcription. TAF1 mediates the binding of TFIID to promoters and interacts with enhancer-bound transcription factors and several GTFs. Additionally, TAF1 contains four enzymatic activities that are essential for viability of eukaryotes and mediate posttranslational modification of GTFs and histones. TAF1 is a bipartite protein kinase and contains an NH2-terminal kinase domain (NTK) and a COOH-terminal kinase domain (CTK). A previous study demonstrated that the CTK phosphorylates serine-residue 33 in histone H2B (H2BS33). However, the role of TAF1-mediated phosphorylation in transcription regulation remained unknown. In this study, the functional importance of H2BS33 phosphorylation (H2BS33P) by TAF1 was investigated by using a combination of biochemical and in vivo assays. In vitro kinase assays uncovered the two essential kinase motifs in TAF1CTK, the ATP-binding motif and the serine/threonine-specific catalytic motif, and indicate that the TAF1 CTK has intrinsic kinase-activity. Western blot analysis using an antibody to H2BS33P revealed that H2BS33 is phosphorylated in Drosophila. RNA-interference (RNAi) assays, designed to attenuate TAF1 expression (TAF1RNAi), revealed that TAF1 is a major kinase for H2BS33 in Drosophila Schneider cells. Flow-cytometry analysis of TAF1RNAi cells indicated that loss of TAF1 expression results in cell cycle arrest in G2/M-phase. Screening the transcription of cell cycle genes in TAF1RNAi cells by using reverse-transcriptase-PCR demonstrated that the transcription of the cell cycle gene string (stg) is reduced in the absence of TAF1. Chromatin immunoprecipitation assays (XChIP) indicate that H2BS33P is detectable at the transcriptionally active stg promoter but not at the silent stg promoter in TAF1RNAi cells. These results demonstrate that phosphorylation of H2BS33 is involved in stg transcription. XChIP-assays using chromatin prepared from Drosophila embryos, which express a mutant TAF1 lacking the CTK, revealed that CTK-mediated phosphorylation of H2BS33 plays an essential role in the activation of transcription of the Drosophila segmentation gene giant. In vitro kinase assays demonstrate that Bdf1 and Bdf2, the yeast homologues of the TAF1CTK, phosphorylate histones suggesting that the kinase activity of the TAF1CTK is phylogenetically conserved. The results of this work demonstrate that TAF1CTK is a major histone kinase of H2BS33 and that TAF1-mediated phosphorylation of H2BS33 plays an essential role in the transcription events during cell cycle progression and development. K1 Genregulation K1 Transkription K1 Transkriptionsfaktor K1 Histone K1 Phosphorylierung K1 Histon H2 K1 Chromatin K1 Modifikation K1 Postt PP Hohenheim PB Kommunikations-, Informations- und Medienzentrum der Universität Hohenheim UL http://opus.uni-hohenheim.de/volltexte/2006/156