RT Dissertation/Thesis T1 Developing indicators and characterizing direct and residual effects of biological nitrification inhibition (BNI) by the tropical forage grass Brachiaria humidicola A1 Karwat,Hannes WP 2019/01/28 AB Nitrogen (N) losses from agroecosystems harm the environment via increased nitrate (NO3-) amounts in water-bodies and nitrous oxide (N2O) emissions to the atmosphere. Bacteria and archaea oxidize ammonium (NH4+) to NO3- under aerobic conditions. Furthermore, under mainly anaerobic conditions, microbial denitrification reduces NO3- to gaseous N forms. The tropical forage grass Brachiaria humidicola (Rendle) Schweick (Bh) has been shown to reduce soil microbial nitrification via root derived substances. Therefore, biological nitrification inhibition (BNI) by Bh might contribute to reduction of N losses from agroecosystems. The present doctoral thesis aimed at assessing the potential of the actual BNI by Bh, as well as the residual BNI effect with new developed methodologies. The overall research was based on the following major objectives: (1) characterization of the residual BNI effect by Bh on recovery of N by subsequent cropped maize (Zea mays L.) under different N fertilization rates; (2) investigate if low enzymatic nitrate reductase activity (NRA) in leaves of Bh is linked to reduced NO3- nutrition by effective BNI; (3) identify a possible link between plant delta 15N of Bh and the BNI effect of different Bh genotypes on nitrification, plant N uptake and NO3- leaching losses. The overall objective was to use and test new methodologies with a minimum of disturbance of the plant-soil system, to characterize BNI of different Bh genotypes in greenhouse and field studies. The first research study focused on the investigation of a potential residual BNI effect of a converted long-term Bh pasture on subsequent maize cropping, where a long-term maize monocrop field served as control. The residual BNI effect was characterized in terms of enhanced maize grain yield, total N uptake and 15N (labeled) fertilizer recovery. Furthermore, the impact of residual BNI effect on soil N dynamics was investigated. The residual BNI effect was confirmed for the first maize crop season after pasture conversion on the basis of lower nitrification in incubation soil, higher total N uptake and higher maize grain yields. However, the residual BNI effect did not result in higher 15N fertilizer uptake or reduced 15N fertilizer losses, nor in reduced N20 emissions. Applied N was strongly immobilized due to long-term root turnover effects, while a significant residual BNI effect from Bh prevented re-mineralized N from rapid nitrification resulting in improved maize performance. A significant residual Bh BNI effect was evident for less than one year only. In the second research study it was the aim to verify the potential of nitrate reductase activity (NRA) as a proxy for the detection of in vivo performance of BNI by selected Bh accessions and genotypes grown under contrasting fertilization regimes. NRA was detected in Bh leaves rather than in roots, regardless of NO3- availability. Leaf NRA correlated with NO3- contents in soils and stem sap of contrasting Bh genotypes substantiating its use as a proxy of in vivo performance of BNI. The leaf NRA assay facilitated a rapid screening of contrasting Bh genotypes for their differences in in vivo performance of BNI under field and greenhouse conditions; but inconsistency of the BNI potential by selected Bh genotypes was observed. The third research study emphasized to link the natural abundance of delta 15N in Bh plants with reduced NO3- losses and enhanced N uptake due to BNI. Increased leached NO3- was positively correlated to rising delta 15N in Bh grass, whereas the correlation between plant N uptake and plant delta 15N was inverse. Long-term field cultivation of Bh decreased nitrification in incubated soil, whereas delta 15N of Bh declined and plant N% rose over time. Delta 15N of Bh correlated positively with assessed nitrification rates in incubated soil. It was concluded that decreasing delta 15N of Bh over time reflects the long-term effect of BNI linked to lower NO3- formation and reduced NO3- leaching, and that generally higher BNI activity of Bh is indicated by lower delta 15N plant values. Within the framework of this thesis, a residual BNI effect by Bh on maize cropping could be confirmed for one season due to the combined methodological approaches of soil incubation and 15N recovery. The development of the NRA assay for sampled Bh leaves was validated as a rapid and reliable method linked to the actual soil nitrification after NH4+ fertilizer supply. Consequently, the assay could be used for both greenhouse and field studies as BNI proxy. The gathered data from the third study indicated that decreasing delta 15N of Bh over time reflects the long-term effect of BNI linked to lower NO3- formation and reduced NO3- leaching, and that generally higher BNI activity of Bh is indicated by lower delta 15N plant values. Consequently, it was suggested that delta 15N of Bh could serve as an indicator of cumulative NO3- losses. Overall, this doctoral thesis suggests the depressing effect on nitrification by Bh might be a combined effect by BNI and fostered N immobilization. Furthermore, BNI by Bh might be altered by different factors such as soil type, plant age and root morphology of the genotypes. Finally, future studies should consider that Bh genotypes express their respective BNI potential differently under contrasting conditions. K1 Nitrifikation K1 Nitrat K1 Ammoniumverbindungen K1 Stickstoffkreislauf K1 Brachiaria PP Hohenheim PB Kommunikations-, Informations- und Medienzentrum der Universität Hohenheim UL http://opus.uni-hohenheim.de/volltexte/2019/1550