TY - THES T1 - Pearl millet breeding in West Africa : steps towards higher productivity and nutritional value A1 - Pucher,Anna Ida Y1 - 2018/06/11 N2 - The enormous human population growth in West Africa (WA) in combination with serious production constraints is very problematic condition for food security. The alarming status of micronutrient deficiency in WA exacerbates this situation. For smallholder farmers improved and nutritious crop varieties derived from plant breeding could be a major contributor to enhancing agricultural productivity and reducing malnutrition. Pearl millet (Pennisetum glaucum (L.) R. Br.) is due to its high tolerance to drought and heat, capable to grow under very harsh environments, and is therefore a staple crop in Sahelian WA. Development of multiple pearl millet breeding approaches will be crucial to exploit the potential of this crop.The main goal of this study was to establish a scientific basis for more efficient pearl millet breeding in WA with a specific focus on achieving higher productivity and nutritional value. In order to accomplish this goal, the following objectives were defined: (I) to characterize a broad set of WA pearl millet accessions and to investigate their diversity and geographic patterns based on their phenotype; (II) to identify the potential and strategies to increase the micronutrient level in WA pearl millet; (III) to evaluate the performance of population hybrids and to derive initial strategies of pearl millet hybrid breeding in WA based on combining ability and heterotic patterns; and (IV) to identify molecular markers for the male-fertility restoration locus (Rf) for the A4 cytoplasmic-genic male-sterility (CMS) system in pearl millet using a genotyping-by-sequencing (GBS) based linkage map. The major results and conclusions of the four studies are summarized in the following:Characterization of a collection of 360 WA pearl millet landraces at six sites in WA identified wide ranges for 12 agro-morphological traits, which indicated a tremendous diversity. Principal component analysis revealed very large diversity within individual countries, and a high genetic admixture among WA pearl millet landraces. The high admixture indicates that heterotic grouping based on morphological distance or geographic distance is not possible. The published data of this study gives national breeders a basis to utilize this germplasm.In the second trial, pearl millet grain iron and zinc densities showed significant genetic variation in a set of 72 WA landraces evaluated at three sites and moderate-to-high heritability, which emphasizes a high potential for biofortification. Identified landraces with moderately high and stable micronutrient densities appear suitable for use in future WA biofortification breeding. Due to significant positive correlations among grain iron, zinc and other mineral densities and non-significant correlations between grain yield and mineral densities, selection for high grain iron and zinc density can be performed simultaneously without a negative effect on grain yield or contents of other micronutrients.The third trial evaluated 100 population hybrids and their 20 parental populations (with four parental open-pollinated varieties from each of five WA countries) at six environments and showed hybrid superiority of, on average, 16.7% compared to their parental populations (with a max. of 73%), reflecting the great potential of hybrid breeding. The mean grain yield of hybrids based on inter-country crosses did not differ significantly from intra-country crosses. Geographic distance between parents was not correlated with panmictic midparent heterosis, indicating that heterotic grouping based on geographic distance is not expedient. However, crosses between accessions from Niger/Nigeria and Senegal were outstanding, thus initial heterotic pools could be based on this information. In the long term, sustainable pearl millet hybrid breeding will require combining ability studies to develop heterotic groups.Within the fourth trial, a high-density linkage map based on single nucleotide polymorphism (SNP) markers produced by GBS was generated using a F2 mapping population, which segregated for fertility restoration of the A4 CMS system. A major Rf locus was found on linkage group 2, which was verified by cross-validation showing a very high quantitative trait locus (QTL) occurrence (97%). The QTL explained 14.5% of the phenotypic variance, which was below expectation because the segregation ratio of male-fertile and male-sterile plants (3:1) indicated monogenic dominant inheritance of this trait. The two KASP markers developed for the QTL will support high-throughput screening for the Rf locus and will facilitate the development of male parental pools exhibiting the fertility restoration, which is an essential step to enable economic pearl millet hybrid seed production. We can conclude that WA pearl millet breeding has the potential to increase the pearl millet productivity and nutritional value by utilizing the enormous pearl millet diversity in hybrid and biofortification breeding programs. KW - Perlhirse KW - Heterosis KW - Mikronährstoff KW - CMS KW - Vielfalt CY - Hohenheim PB - Kommunikations-, Informations- und Medienzentrum der Universität Hohenheim AD - Garbenstr. 15, 70593 Stuttgart UR - http://opus.uni-hohenheim.de/volltexte/2018/1477 ER -