TY - THES T1 - Evaluation of a UHF RFID system for livestock A1 - Hammer,Nora Y1 - 2017/07/19 N2 - A structural change could be observed within German animal production in recent years. Whereas the number of livestock holdings decreased, the number of animals per livestock holding increased. Because bigger livestock holdings are also often in a conflict of aims between sustainability, animal welfare and economy, a well-functioning and cost-effective management assistance is even more important. The collection of animal-related data and data from their environment with simple, innovative and low-cost techniques to improve animal welfare, animal health and animal performance, as well as the housing conditions, is a main part of so-called precision livestock farming (PLF). A possible solution for implementation of these thoughts is a technology called radio-frequency identification (RFID). The suitability of an UHF RFID system for simultaneous pig and cattle detection could be evaluated during a three year project, which was funded by the Federal Office of Agriculture and Food. Therefore, several UHF transponder ear tags had to be developed and tested in laboratory and practical experiments. Additionally, a cost-benefit analysis of the UHF system based on four example barns had to be carried out to estimate the potential of the system for use in practice. Thereby, not only the costs and benefits of simultaneous animal detection were calculated, but also the costs and benefits of hotspot monitoring of the animals in their husbandry environment were estimated. Nine different transponder types for each animal species were developed within the duration of the project. During the development process, the antenna structure, antenna length and label material had to be varied to adjust the transponder to its immediate surroundings as optimally as possible. The grouting process of the transponder into the ear tag was also continuously improved. Before testing the UHF transponder ear tag types in practice, they were all tested on a dynamic test bench. Using this test bench, a preliminarily assessment of the in-house developed transponder types by themselves, with foreign and commercially available UHF transponder types under various conditions was possible. The number of readings per round was recorded and used to identify differences between the transponder types. The UHF transponder ear tag types were tested with the aid of driving experiments using pigs and cattle with a focus on their suitability and durability under practical conditions. While one gate in a stall environment was built in the driving experiments for the fattening pigs, with cattle, reader output power, reader orientation and the test environment were varied. In these experiments, the number of readings per round and the reading rates, which were the more decisive value in practice, were calculated. In the last stage of development, a suitable, well-functioning UHF transponder ear tag type and good average reading rates could be achieved for both animal species (pigs: ø 98 %; cattle: ø 99 %) While performing the cost-benefit analysis, it could be calculated that, at the present state of development of the UHF system, the benefits do not exceed the costs of the system in the fattening pig husbandry. In dairy cattle husbandry, a positive result could be reached only under the best estimations and the larger farm. However, the costs arising per animal are still too high to implement the systems on the market. Because of the early stage of development, the calculation of the costs and benefits was difficult and still holds uncertainties. Following the assumption that the UHF system will be developed to practical maturity, the costs calculated would be lower and an advantageousness of the system would be also expected for other farms. This work was sensible and necessary to get a first assessment of the costs and benefits. Great development progress could be achieved for the UHF RFID system and a large potential for PLF could be shown within this project, even if the system is not yet ready for market. KW - RFID KW - Transponder KW - Mastschwein KW - Milchkuh CY - Hohenheim PB - Kommunikations-, Informations- und Medienzentrum der Universität Hohenheim AD - Garbenstr. 15, 70593 Stuttgart UR - http://opus.uni-hohenheim.de/volltexte/2017/1370 ER -