RT Dissertation/Thesis T1 A unified appraisal framework for the assessment of biorefinery technologies : an approach and first steps to application A1 Suwelack,Kay WP 2016/10/11 AB As part of the desired bio-economy, biomass will find a wide industrial application in the future, re-placing fossil resources and reducing the need of their import from insecure third countries. However, such an increased industrial application of biomass holds its own problems e.g. like an intensifying competition between food and fuel (and so an increasing competition for arable land) and sometimes other serious social problems, such as the so-called Tortilla-Crisis in Mexico in 2007. Therefore, (political) decision making within a bio-economy has not only to account for economic and ecologic aspects, but also for societal ones in the fields of human rights and justice. Moreover, the three aspects of sustainability (economics, environment, and societal aspects) are to be aligned and balanced within those decisions. A standardized assessment methodology for biorefinery technologies, acknowledging all these aspects, has not been presented in literature so far. However, the need for such a standardized assessment framework was already discussed and demanded in the literature. In the present work, a basic architecture for such an assessment methodology as well as a standardized procedure for the selection of biorefinery technologies is presented (Section 2). The methodology includes thoroughly executed technology analysis by Technology Design Assessments (data level). It concerns explicit values and ethics by the use of the triple bottom line approach of sustainability on the impact level. On the decision making level a tailor-made multi-criteria decision making method (Multi-criteria Based Benchmarking) is proposed and Advanced Radar Plots are used for transparent and easy visual comparison of different policy options. The appraisal framework proposed goes beyond the literature on bioenergy appraisal frameworks and can be used as a baseline for future research. Furthermore, first steps towards the implementation of the proposed methodology are undertaken. In this context, hydrothermal carbonization is used as an example as a promising technology in a new developing bio-economy. Based on data from lab experiments, model equations are derived using a severity approach for proper mass balancing (Section 3 and 4). With these equations the product yields of hydrothermal carbonization (of biogas digestate and wheat straw) as well as the degree of carbonization of the hydrochar produced are quantified as functions of different process parameters using a severity approach. In contrast to other studies, a logarithmic dependence on process severity was applied. Process severity itself was calculated from temperature, retention time and catalyst concentration. By these models basing on few selected reaction conditions, a wide range of process conditions can be covered and the yields for the solid, liquid, and gaseous product phase can be predicted. The equations form the necessary data input for the basic Technology Design Assessment of HTC defined within the proposed standardized appraisal framework. K1 Biogas K1 Stroh K1 Pflanzenkohle K1 Massenbilanz K1 Gärrest K1 Biomasse K1 Biokraftstoff PP Hohenheim PB Kommunikations-, Informations- und Medienzentrum der Universität Hohenheim UL http://opus.uni-hohenheim.de/volltexte/2016/1271