RT Dissertation/Thesis T1 Degradation of crude protein and starch of corn and wheat grains in the rumen A1 Seifried,Natascha WP 2016/08/23 AB The major objectives of the present thesis were to characterize the ruminal crude protein (CP) and starch degradation of different genotypes of corn and wheat grains and to predict the effective degradation (ED) of CP and starch with easily measurable characteristics. The in situ method is the standard technique to study the ruminal degradation of feeds in many feed evaluation systems. This technique was originally applied to study forages and it was therefore necessary to clarify methodical details related to the measurements of in situ starch degradation from cereal grains. Two in vitro and one in situ approach were conducted to study the loss of secondary starch particles from bags with different pore sizes used for the in situ incubation of different cereal grains. In the first in vitro study ground wheat was incubated in bags (pore size: 50 µm) over different time spans in a modified rumen simulation technique. Bag residues and fermenter fluids were analyzed for their starch content. In the second in vitro study ground wheat, barley, and corn were incubated with bags of pore sizes of 50, 30 (except corn), 20, and 6 µm. In the in situ study ground wheat, barley, corn, and oats were rumen incubated over different time spans using bags with pore sizes of 50, 20, and 6 µm. The starch content of the grains and bag residues was analyzed enzymatically and the degradation characteristics of starch were calculated for each grain type and pore size. It was shown for the first time that incubating wheat and barley in bags with 50 and 30 µm pore size lead to a substantial amount of secondary starch particle losses during incubation process in vitro. These losses were not detectable when the grains were incubated with bags having pore sizes of 20 and 6 µm. Independent of the bags’ pore size no secondary starch particle losses were found by the incubation of corn. Thus corn can be studied in situ even with bags with 50 µm pore size. Oats showed very high washout losses with all pore sizes tested in the present thesis and therefore none of them is suitable to study the starch degradation measurements of oats. Because of methodical problems of gas accumulation in bags having pore sizes < 50 µm, no recommendations can be provided for the in situ evaluation of wheat and barley. Further research is necessary to solve these problems. In the second and third study of the present thesis ruminal in situ degradation of 20 corn grain genotypes and 20 wheat grain genotypes was measured in three lactating Jersey cows. In both experiments the same techniques were used to characterize the ruminal degradation of CP and starch. Ground grains (2 mm) were rumen incubated in bags (50 µm pore size) over different time spans. Grains and bag residues were analyzed for their CP and starch content. The degradation parameters and the ED were calculated for dry matter (DM), CP, and starch. Gas production (GP) of ground grains (1 mm) was recorded after incubation over different time spans in buffered ruminal fluid and fitted to an exponential equation to determine GP parameters. To predict ED of CP and starch correlations with physical and chemical characteristics and in vitro measurements were evaluated and stepwise multiple linear regression analyses were applied. The in situ parameters (soluble fraction, potential degradable fraction, and degradation rate) varied widely between genotypes of corn and wheat grains. The ED of DM, CP, and starch showed a high variation for corn grain genotypes. Due to the high degradation rates, the ED of wheat grains were similar between genotypes. The GP rate was in good agreement with the in situ values for corn grains, whereas no systematic relationship between both methods was observed for wheat grains. Evaluation of correlation analysis showed significant relationships between calculated ED of CP and several amino acids (AA) for both grain types. This indicates that the protein composition of the grains influences CP degradation in the rumen. Similar relationships were found between the same AA and ED of starch of corn grains which highlights the impact of the protein composition on ruminal starch degradation for this grain type. For both grain types, the ED of starch and CP could be predicted accurately from physical and chemical characteristics alone or in combination with GP measurements. Thus, the equations presented in the present thesis can be used to obtain rapid and cost effective information on ruminal degradation of CP and starch for corn and wheat grains. The results of the present thesis show that there is considerable variation of ruminal CP and starch degradation from different genotypes of corn and also – albeit to a lesser extent – for wheat grains. Differences in ED of starch should be taken into account when formulating rations containing significant amounts of corn and wheat grains. In the case of corn grains differences in ED of CP should also be accounted for. K1 Milchkuh K1 Pansen K1 Getreide K1 Rohprotein K1 Stärke PP Hohenheim PB Kommunikations-, Informations- und Medienzentrum der Universität Hohenheim UL http://opus.uni-hohenheim.de/volltexte/2016/1251