RT Dissertation/Thesis T1 Multiple Funktionen des FGF-Signalwegs regulieren die Lateralitätsentwicklung im Krallenfrosch Xenopus A1 Schneider,Isabelle WP 2015/02/17 AB Während der Embryonalentwicklung muss die Lateralität etabliert werden, d.h. die ursprüngliche Symmetrie der links-rechts Achse muss gebrochen werden, um die asymmetrische Anordnung der inneren Organe zu ermöglichen. Dabei werden die Organe nicht zufällig, sondern in einem bestimmten Muster angeordnet. Dies wird durch die Expression der konservierten Nodal-Genkaskade gewährleistet, die asymmetrisch im linken Seitenplattenmesoderm exprimiert wird. Der Bruch der Symmetrie, welcher zu dieser asymmetrischen Nodal-Kaskade führt, wird über einen linksgerichteten Flüssigkeitsstrom vermittelt, der wiederum durch die rotierende Bewegung motiler Cilien entsteht. Das Epithel, das den Flüssigkeitsstrom erzeugt, findet sich im Bereich des posterioren Notochords und weist lateral auf beiden Seiten eine symmetrische Expression von Nodal auf. Diese frühe bilaterale Nodal-Domäne ist Vorraussetzung für die Induktion der asymmetrischen Nodal-Kaskade. Während Nodal-Funktion und Flüssigkeitsstrom innerhalb der Wirbeltiere weitgehend konserviert sind, wurden für den FGF-Signalweg divergierende Funktionen in der Lateralitätsentwicklung von Maus, Huhn, Kaninchen und Zebrabärbling beschrieben. In dieser Arbeit wurde die Rolle der FGF-Signalaktivität für die Lateralitätsentwicklung von Xenopus laevis untersucht. Durch systemische Anwendung eines Rezeptorantagonisten in verschiedenen Entwicklungsstadien war es möglich, zwei zeitlich unterschiedliche Funktionen von FGF zu dokumentieren. Zum einen wird der FGF-Signalweg in den frühen Gastrulastadien für die Expression von FoxJ1 benötigt, dem Masterkontrollgen für motile Cilien, und somit für die Ciliogenese des symmetriebrechenden Epithels des Krallenfrosches, der GRP („gastrocoel roof plate“). Zum anderen wirkt der FGF-Signalweg auf die bilaterale Expression von Nodal. Durch deskriptive und funktionelle Untersuchung konnte gezeigt werden, dass die Nodal-exprimierenden Zellen den somitischen Anteil der GRP darstellen und ihre Entstehung durch FGF-Funktionsverlust verhindert wird. Interessanterweise steht der frühe Effekt von FGF auf die Ciliogenese im Einklang mit der beschriebenen Rolle im Zebrabärbling, während der spätere Effekt der Inhibition, der Verlust der bilateralen Nodal-Domäne, bereits in der hypomorphen Fgf8 Mausmutanten beschrieben wurde. Die Beschreibung von zwei zeitlich getrennten Funktionen in Xenopus zeigt somit, dass der FGF-Signalweg eine stärkere Konservierung aufweisen könnte als bislang angenommen. Der FGF-Signalweg teilt sich in verschiedene Zweige auf, von denen zwei in der frühen Embryonalentwicklung von Xenopus eine wichtige Rolle spielen. Hierbei wird über die FGF-abhängige MAPK-Aktivierung die Induktion des Mesoderms gewährleistet, während der PLC/PKC/Calcium-Signalweg Einfluss auf morphogenetische Veränderungen nimmt. Die FGF-vermittelte Wirkung auf die Expression von FoxJ1 stand dabei in einem zeitlichen Zusammenhang mit der Aktivität des FGF-Signalweges in der Spezifizierung des Mesoderms. Somit hatte die Rezeptor-vermittelte FGF-Inhibition in frühen Gastrulastadien starke Defizite in der Expression mesodermaler Markergene und, damit einhergehend, Blastoporusschlussdefekte zur Folge. Dies konnte durch Inhibition in späteren Gastrulastadien, in denen die Induktion des Mesoderms als weitestgehend abgeschlossen gilt und in denen der FGF-Signalweg auf die lateralen GRP-Zellen wirkt, vermieden werden. Um aufzuklären, welche der beiden intrazellulären Signaltransduktionskaskaden für die beobachteten Phänotypen verantwortlich waren, wurde der FGF-abhängige PLC/PKC/Calcium-Signalweg durch den intrazellulären Antagonisten Sprouty1 inhibiert. Sprouty1-Funktionsgewinnexperimente zeigten keinen negativen Einfluss auf die Ciliogenese, jedoch hatten sie denselben inhibierenden Effekt auf die somitischen GRP-Zellen wie die Rezeptor-vermittelte Inhibition des FGF-Signalweges. Dies deutete darauf hin, dass die FGF-abhängige Entstehung dieser Zellen durch den PLC/PKC/Calcium-Signalweg gewährleistet wird. Dass hierbei insbesondere intrazelluläres Calcium für die Bildung dieser Zellen wichtig ist, ergab sich aus Experimenten mit einem Calcium-permeablen Ionenkanal. Die frühere Funktion von FGF, die Ciliogenese, wurde dagegen unabhängig vom PLC/PKC/Calcium-Signalweg vermittelt, möglicherweise über den MAPK-Signalweg. Zusammenfassend zeigt die vorliegende Arbeit, dass der FGF-Signalweg in der Lateralitätsentwicklung von Xenopus zwei Funktionen spielt, die in Einklang mit einer konservierten Funktion dieses Signalwegs in der Lateralitätsentwicklung der Wirbeltiere stehen. Die hier gezogenen Erkenntnisse über die Wirkung des FGF-Signalwegs auf die lateralen GRP-Zellen, liefern neue Ansätze zur Untersuchung der LR-Achsendeterminierung. Als Sensorzellen des linksgerichteten Flüssigkeitsstroms spielen sie eine entscheidende Rolle in der Lateralitätsentwicklung. K1 Embryologie K1 Entwicklungsbiologie K1 Krallenfrosch K1 Lateralität K1 Fibroblastenwachstumsfaktor PP Hohenheim PB Kommunikations-, Informations- und Medienzentrum der Universität Hohenheim UL http://opus.uni-hohenheim.de/volltexte/2015/1047